
Advances in Computer Science and its Applications 59
Vol. 1, No. 1, March 2012
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

XML driven SCPI interpreter

1Vikas Deshmane
1 Pune University, Pune, India

Email: deshmane.vikas@gmail.com

Abstract –In 1990, Standard Commands for Programmable Instruments (SCPI) was defined with the IEEE 488.2 specifications.
SCPI created a consistent programming model across all manufacturers and models. Today, SCPI is supported by most of the
manufacturers of programmable instruments including Agilent (HP), Tektronix, Keithley, Fluke, and Racal. The power of SCPI is in
its consistent, inclusive and dynamic fundamentals. SCPI is designed to be expanded with new defined commands in the future
without causing programming problems. As new instruments are introduced, the intent is to maintain program compatibility with
existing SCPI instruments. To match the philosophy behind SCPI, a good SCPI implementation should complement its dynamism yet
maintaining consistency. This paper summarizes important features of SCPI and what a configurable implementation must do to
complement them. It introduces a Regex-XML driven hybrid implantation designed to complement extensibility, portability and
maintainability that is fundamental to SCPI and standards alike.

Keywords –SCPI; SCPI Parser; XML engines; XML driven parser

1. Introduction

Commercial computer-controlled test instruments
introduced in the 1960s used a wide variety of non-
standard, proprietary interfaces and communication
protocols1. As programmable instruments became more
powerful, so the control languages had to become more
complex. For a customer building integrated testing
systems and control software, the overhead of learning
how to control each piece of equipment had become a
major problem1.

In 1975, the Institute of Electrical and Electronic
Engineers approved IEEE 488-1975 was revised and
updated in following years. These standards defined
the roles of instruments and controllers in a
measurement system and a structured scheme for
communication. It defined some frequently used
housekeeping commands explicitly, but each
instrument manufacturer was left with the task of
naming any other types of command and defining
their effect. Also, it generally did not specify which
features or commands should be implemented for a
particular instrument. Thus, it was possible that two
similar instruments could each conform to IEEE
488.2, yet they could have an entirely different
command set.1

Standard Commands for Programmable
Instruments (SCPI) was introduced in 19902. SCPI
created a standard which could be common across all
manufacturers and models. The goal of Standard
Commands for Programmable Instruments (SCPI) is
to reduce Automatic Test Equipment (ATE) program
development time. SCPI accomplishes this goal by
providing a consistent programming environment for
instrument control and data usage. Today, SCPI is
supported by most of the manufacturers of
programmable instruments including Agilent (HP),
Tektronix, Keithley, Fluke, and Racal3.

In 2002-2003, the SCPI Consortium voted to
become part of the IVI (Interchangeable Virtual
Instruments) Foundation4.

The SCPI Consortium evolved to standardize the
control language used between programmable
instruments. The SCPI Consortium meets once a year to
consider modifications to the SCPI Standard. The SCPI
Standard is free.3

2. Need for configurability

The power of SCPI is in the way it maintains
consistency across the devices that implement it and
yet it is a very dynamic standard. SCPI is designed to
be expanded with new defined commands in the
future without causing programming problems. As
new instruments are introduced, the intent is to
maintain program compatibility with existing SCPI
instruments.

A typical static implementation of SCPI will suppress
its power. To match the philosophy behind SCPI, a good
SCPI implementation should complement its dynamism
yet maintaining consistency. We briefly summarize
important features of SCPI and what a configurable
implementation must do to complement them.

1. Extensibility: SCPI is designed to be
expanded and new versions will introduce
new commands. Also, new versions of device
could introduce additional features which
SCPI already supports. A configurable
implementation must provide a simple way to
add new commands.

2. Portability: A key to consistent
programming is the reduction of multiple
ways to control similar instrument functions.
The philosophy of SCPI is for the same
instrument functions to be controlled by the
same SCPI commands. This makes it



Vikas Deshmane, ACSA, Vol. 1, No. 1, pp. 59-62, March 2012 60

portable across instruments. A configurable
implementation should also be portable.

3. Reusability and Maintainability: Good
software is reusable and maintainable. SCPI
standard fundamentally supports reusability.
A nicely written configurable
implementation (like XML driven, with a
graphical tools to edit it) can also be
maintained by non-programmers.

4. Scalability: SCPI defines some common
command sets for similar classes of
instruments2. You can choose to support one
or more of these classes according to the type
of your instrument. A good implementation
should support different scenario that
different instruments will introduce.

3. Elements of SCPI programming

3.1. SCPI command Tree

A SCPI command is chain of keywords followed by
another chain of parameters. E.g. “:HOR:MAIN:SCAL
1E-6”. The keywords follow a hierarchical order, like a
tree (or more appropriately directed graph as explained
later). When a colon is between two command keywords,
it moves the current path down one level in the command
tree. Following features summarize SCPI lexicon

1. Command abbreviation: Each command has a
long form and an abbreviated short form. Upper
and lower case writing can be used, however, only
exact long form or short form is allowed. E.g.
:HOR and :HORizontal can be used
interchangeably.

2. Optional Keywords: A branch in SCPI command
tree represents a SCPI command and certain
nodes in a branch are optional. E.g. :IMMEDIATE
in :HCOPY:IMMEDIATE is optional and can be
omitted. This feature is what makes SCPI
command set a directed graph of keywords rather
than a tree.

3. Multiple commands: You can send multiple
commands within a single program message by
separating the commands with semicolons. SCPI
implementation should keep track of current path,
and the next command is only valid if it includes
the entire keyword path from the root of the tree.
E. g. :SOURCE:POWER:START 0DBM; STOP
10DBM. In this case, START and STOP are at the
same level under POWER. Alternatively, a ‘:’at
the start of the command resets the path to root, so
we could write the same command as
:SOURCE:POWER:START 0DBM;
:SOURCE:POWER: STOP 10DBM. Note that
parameters and semicolon do not affect current
path.

4. Context, Traces and Markers: SCPI Keywords
may carry a notion of a context, a trace or a
marker in them. In this case the keyword carries a
numeric suffix. E.g.
CALCULATE1:SMOOTHING:STATE ON. The
numeric suffix represents a context, a trace or a
marker and typically defaults to context, trace or
marker if unspecified.

3.2. SCPI parameter formats

Many SCPI commands accept parameters, which is
comma separated list that is separated from the path by a
whitespace character. SCPI specifies several data formats
that are built over logical, numeric, enumeration, string
and binary data types. We present a brief summary here

1. 8, 16, 32 and 64 bit Integers which could be
range restricted (bound on lower or upper or
both sides) or enumeration restricted (only
certain values are acceptable).

2. 32 and 64 bit floating points. These are
typically followed by a unit of function (e. G.
HZ for FREQUENCY which is optional).

3. Enumeration (specific string representations of
numeric values).

4. Free form strings (possibly length restricted).

5. Binary (blob).

6. Arrays, Structures and Unions: Additionally,
several commands accept a range of overloaded
parameter list that can be best represented by
higher order data structures.

3.3. SCPI overloads

A SCPI parameter may be optional. Also, a SCPI
command may be overloaded, or could allow two
different types of parameter lists. Typically a SCPI
command has two overloads

1. GET: To read out a functional value. This is
carried out by supplying a question mark (?)
in place of parameter list.

2. SET: To set a functional value. This is
carried out by supplying parameter values.

4. XML representation of SCPI structure
The SCPI representation we propose is hybrid. It has

XML base to explain parameter list for a command,
format of various parameters, and command behavior.
However, the lexicon of command path is expressed
using regular expressions.

4.1. Representing command



Vikas Deshmane, ACSA, Vol. 1, No. 1, pp. 59-62, March 2012 61

A <Command> element defines complete behavior of
a command. It is specified as

<Command
Code="[:SENSe#1]:FREQuency:CENTer">

<Syntaxes>
<!—One or more syntaxes -->

</Syntaxes>
<Descriptions>

<!—Descriptions for documentation-->
</Descriptions>

</Command>

Command path is identified by its code. A detailed
parameter list and command behavior specification is
explained in the syntax node.

4.2. Representing command path

We write command path almost exactly in the same
way as it appears in the programmer’s manual.

1. Command code consists of tokens separated by
`:'. Abbreviated part of keyword is capitalized
and rest is in lowercase.

2. An optional keyword is surrounded by square
brackets. And

3. An optional context (or trace/marker)
specification is represented by a numeric index
preceded by #. The numeric index corresponds
to an index in Argument list explained later.

Following these rules (and rules for basic data types),
lexical analyzer could and has been generated
automatically from XML representation.5

4.3. Representing syntax

Particular usages of a command are defined by
syntaxes (or overloads). Syntax can be defined by
command code, role and arguments. Two different
syntaxes differ either in command path or in role or in
argument list. We specify Syntax as

<Syntax Behavior="SYNC" Role="SET">
<Arguments>

<!—Zero or more arguments -->
</Arguments>
<Returns>

<!—Zero or more returns -->
</Returns>
<Messages>

<!—Zero or more messages -->
</Messages>

</Syntax>

4.4. Arguments and Returns

<Arguments> encloses a list <Argument> elements
which are passed to SCPI parser along with command
codes. With <Argument> a format or composite format is
always associated which dictates values parser will accept
for the argument. We specify an argument as

<Argument Name="center frequency" Index="2">
<Format Code="FREQUENCY" />

</Argument>

Attributes `Name' is used for documentation purpose
only. The Index should be exactly same as position of the
<Argument> element in list under the parent
<Arguments> element. Format indicates format of the
argument and must be defined previously in `Formats'
list. Syntax is validated against every argument in
<Arguments> list.

Syntax may have zero or more return value, which are
represented by <Return> elements under <Returns>.
Returns follow same syntax as arguments.

4.5. Representing Formats

<Arguments> encloses a list <Argument> elements
which are passed to SCPI parser along with command
codes. With <Argument> a format or composite format is
always associated.

5. XML representation of command
behavior

A typical command behavior could be explained by a
sequence of messages to a proprietary communication
library. The format of message could differ from
manufacturer to another or even within different versions
of software on same device. We present what we think is
fair representation of necessary information that would
cover a large number of cases.

5.1. Messages

Messages instruct parser what to do when a
command is validated. There are more possibilities
than just sending a message to or receiving it back
from measurement server. A message works in
combination with child “Instructions" and “Blocks"
element discussed later.

A message is specified as

<Message Index="1" Target="PARSER"
Type="GET" Direction="GO" Code="CF">

<!— Zero or more instructions -->
<!— Zero or more blocks -->

<Message>

The Target attribute indicates who the message is
targeted to.

1. MS Messages (for measurements): A MS
message with `Direction' attribute set to
`GO' is sent to MS along with the Blocks
attached. A MS message with `Direction'



Vikas Deshmane, ACSA, Vol. 1, No. 1, pp. 59-62, March 2012 62

attribute set to `BACK' is waited for from
MS. A message direction could be ‘EVENT’
representing various events to be processed.

2. Parser Messages (for parser
environment): Parser messages could be
used for housekeeping device, like clearing,
setting registers etc. Parser messages could
also be used to maintain parser environment
(like to maintain session variables for
‘session-ful’parser).

5.2. Blocks

A message may contain a list of associated blocks
under a child <Blocks> element as <Block> elements.
A typical block is specified as

<Block Index="1" xsi:type="BlockArgClass"
Datatype="INT 8" Code="REGMASK"
Target="ARGUMENT" Value="1">

</Block>

The “Target" attribute specifies what provides or
retrieves value of the block. The target can be

1. ARGUMENT/RETURN: The value is obtained
from a validated argument or return whose index is
specified in the following `Value' attribute, except
when Code of the block is “UNIT" the value is
obtained from unit for the argument.

2. VARIABLE: Value can come from a session
variable, whose name is specified in following Value
attribute.

3. VALUE: A string representation of value
which can be converted to the blocks data type.

5.3. Instructions

<Message> elements can have a special
<Instruction> element attached to them. In this case
the instruction is validated before message is
processed and message is processed only instruction
is valid. For e. g.

<Instruction xsi:type="EQUAL">
<Field Index="1" Code="LHS"

Datatype="INT 8" Target="VARIABLE" Value="M
LIMTYP/>

<Field Index="2" Code="RHS"
Datatype="INT 8" Target="VALUE" Value="LT
TIME"
/>
</Instruction>

validates equality of specified fields. The value of the
fields is obtained in the same fashion as blocks (with
combinations of Target and Value attributes).

6. Optimizations

1. Automatically generated lexical analyzer:
A lexical analyzer could be generated
automatically from the specification.

2. Binary storage: As the device environment
is constrained, it is best to write a pre-
translator program that would translate XML
representation into a binary file, which can
be transferred to device to be loaded at the
startup.

3. String elimination: During mapping, all the
string keywords could be replaced by a
unique numeric hash-code. Lexical analyzer
and interpreter should use same hash
algorithm.

7. Conclusions

This essay presents a powerful, configurable
implementation of SCPI standard that complements the
philosophy behind SCPI. The proposal uses structured
text formats like regular expressions and XML.

These formats could be maintained easily with help
of XML editors or custom graphical tools. The relevant
XML schema is free and can be obtained by emailing the
author. Author has also developed a successful
implementation5

8. Acknowledgements

I would like to thank my colleagues who helped me
with my work and in preparing report. I also extend my
sincere thanks to the head, faculty and staff members of
Department of Computer Engineering and Information
Technology at Marathwada Mitra Mandal's Institute of
Technology, Pune for helping us in various aspects. Last
but not least we are grateful to our parents for all their
support and encouragement.

References

[1] SCPI Consortium. Standard Commands for Programmable

Instruments (SCPI) Volume 1: Syntax and Style VERSION 1999.0.

SCPI Consortium. May 1999.

http://www.ivifoundation.org/docs/SCPI-99.PDF, pp. 1-2

[2] National Instruments. History of GPIB. National Instruments. Jun

15, 2009. http://zone.ni.com/devzone/cda/tut/p/id/3419.

[3] JPA Consulting. SCPI Explained. JPA Consulting,1999.

http://www.jpacsoft.com/scpi_explained.htm.

[4] IVI Foundation. Integration into IVI foundation. IVI Foundation.

http://www.ivifoundation.org/scpi/default.aspx.

[5] Deshmane, Vikas. Parser and interpreter for spectrum analyzer.

Final year thesis. Pune University, India. 2012.


